Research
• Afridi HI, Kazi TG, Jamali MK, et al. Analysis of Heavy Metals in Scalp Hair Samples of Hypertensive Patients by Conventional and Microwave Digestion Methods. Spectroscopy Letters. 2006;39(2):203-214.
• Alabdali A, Al-Ayadhi L, El-Ansary A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behavioral and Brain Functions. 2014;10(1):14
• Ashraf, W., Jaffar, M., Mohammed, D., Iqbal, J. Utilization of scalp hair for evaluating epilepsy in male and female groups of the Pakistan population. Sci. Total Environ. 164(1):69-73, 1995.
• Bass DA, Hickock D, Quig D, Urek K.. Trace element analysis in hair: factors determining accuracy, precision, and reliability. Altern Med Rev. Oct;6(5):472-81, 2001.
• Bencze K. Determination of metals in human hair. In: Seiler H G, Sigel A, Sigel H, eds. Handbook on Metals in Clinical and Analytical Chemistry. New York, NY. Dekker, 1994: p. 214
• Blaurock-Busch E., Amin OR, Dessoki HH, Rabah T. Toxic Metals and Essential Elements in Hair and Severity of Symptoms among Children with Autism. Maedica (Buchar). 2012 Jan;7(1):38-48.
• Contiero, E., Folin, M. Trace elements nutritional status. Use of hair as a diagnostic tool. Biol. Trace Elements. 40(2):151-60, 1994.
• Druyan M E, Bass D A, Puchyr R et al. Determination of reference ranges for elements in human scalp hair. Biol Trace Elem Res 1998; 62: 183-197
• Foo, S.C., Khoo, N.Y., Heng, A. et al. Metals in hair as biological indices for exposure. Int. Arch Occup Environ Heath (1993) 65(Suppl 1): S83.
• Gellein K, Lierhagen S, Brevik PS, et al. Trace Element Profiles in Single Strands of Human Hair Determined by HR-ICP-MS. Biological Trace Element Research. 2008;123(1-3):250-260.
• Holsbeek, L., Das, H.K. and Joiris, C.R. Mercury in human hair and relation to fish consumption in Bangladesh. Sci. Total Environ. 186(3):181-8, 1996.
• I.D. Capel, M.H. Pinnock, H.M. Dorrell, D.C. Williams and E.C. Grant. Comparison of concentrations of some trace, bulk, and toxic metals in the hair of normal and dyslexic children. Clinical Chemistry. vol. 27 no. 6 879-881, 1981.
• LeClair, J.A. and Quig, D.W. Hair lead and cadmium levels and specific depressive and anxiety-related symptomotology in children. J. Orthomolec. Med. 18(2):97-106, 2003.
• Malm, O., Branches, F.J., Akagi, H., Castro, M.B., Pfeiffer, W.C., Harada, M., Bastos, W.R. and Kata, H. Mercury and methylmercury in fish and human hair from the Tapajos river basin, Brazil. Sci. Total Environ. 175(20):141-50, 1995.
• Maugh T, H 2nd. Hair: a diagnostic tool to complement blood serum and urine. Science 202(22):1271-1273, 1978.
• Minder, B., Das-Smaal, E.A., Brand, E.F., Orlebeke, J.F. Exposure to lead and specific attentional problems in school children. J Learn Disabil, 27(6):393-9, 1994.
• Mohamed FEB, Zaky EA, El-Sayed AB, et al. Assessment of Hair Aluminum, Lead, and Mercury in a Sample of Autistic Egyptian Children: Environmental Risk Factors of Heavy Metals in Autism. Behavioural Neurology. 2015;2015:1-9.
• Olmedo P, Pla A, Hernández A, López-Guarnido O, Rodrigo L, Gil F. Validation of a method to quantify chromium, cadmium, manganese, nickel and lead in human whole blood, urine, saliva and hair samples by electrothermal atomic absorption spectrometry. Analytica Chimica Acta. 2010;659(1-2):60-67.
• Pesch A, Wilhelm M, Rostek U, et al. Mercury concentrations in urine, scalp hair and saliva in children from Germany. Journal of Exposure Science & Environmental Epidemiology. 2002;12(4):252-258.
• Puchyr R F, Bass D A, Gajewski R. Preparation of hair for measurement of elements by inductively coupled mass spectrometry (ICP-MS). Biol Trace Elem Res 1998; 62: 167-182
• Rose, J.: Brain Biochemistry, Neurotoxicity, and Criminal Violence. In: Environmental Toxicology, ed. J. Rose. London and New York, Gordon and Breach Publishers, in press.
• Saghazadeh A, Rezaei N. Systematic review and meta-analysis links autism and toxic metals and highlights the impact of country development status: Higher blood and erythrocyte levels for mercury and lead, and higher hair antimony, cadmium, lead, and mercury. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2017;79:340-368.
• Salonen, J.T., Seppanen, K., Nyssonen, K., Korpela, H., Kauhanen, J., Kantola, M., Tuomilehto, J., Esterbauer, H., Tatzber, F. and Salonen, R. Intake of mercury from fish, lipid peroxidation, and the risk of myocardial infarction and coronary, cardiovascular, and any death in eastern Finnish men. Circulation 91(3):646-55, 1995.
• Skalny AV, Simashkova NV, Klyushnik TP, et al. Analysis of Hair Trace Elements in Children with Autism Spectrum Disorders and Communication Disorders. Biological Trace Element Research. 2016;177(2):215-223.
• Tabatadze, T., Zhorzholiani, L., Kherkheulidze, M., Kandelaki, E., Ivanashvili T. Hair heavy metal and essential trace element concentration in children with autism spectrum disorder. Georgian Med News. 2015 Nov;(248):77-82.
• Watt, F., Landsberg, J., Powell, J.J., Ede, R.J., Thompson, R.P. and Cargnello, J.A. Analysis of copper and lead in hair using the nuclear microscope; results from normal subjects and patients with Wilson’s disease and lead poisoning. Analyst 120(3):789-9, 1995.
• Yassa HA. Autism: A form of lead and mercury toxicity. Environmental Toxicology and Pharmacology. 2014;38(3):1016-1024.
• Yasuda H, Yasuda Y, Tsutsui T. Estimation of autistic children by metallomics analysis. Scientific Reports. 2013;3(1).