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Got Guts? Need Nerve!

See “Enteric glia regulate intestinal barrier
function and inflammation via release of s-
nitrosoglutathione,” by Savidge T, Newman P,
Pothoulakis C, Ruhl A, Neunlist M, Bourreille
A, Hurst R, Sofroniew MV, on page 1344.

Studies of inflammatory bowel disease (IBD) patho-
genesis have primarily focused on the mucosal im-

mune system and, more recently, the epithelium. Studies
of experimental IBD also suggest a potential role for
enteric glia in disease pathogenesis.1,2 Together with neu-
rons, glia are intrinsic components of the enteric nervous
system. Within the mucosa, the enteric glia, which encase
nerve fibers, form a dense mesh surrounding the crypt bases
and experimental ablation of these enteric glia results in
severe hemorrhagic enteritis.1,2 New data reported in this
issue of GASTROENTEROLOGY suggest that disruption of in-
testinal epithelial barrier function may be one mechanism
by which glial ablation causes enteritis (Figure 1).3

Disruption of the intestinal epithelial barrier, which
can be measured as increased permeability, is common in
gastrointestinal disease and was reported in Crohn’s dis-

ease (CD) �25 years ago.4 These increases in permeability
might simply be due to mucosal ulceration, but are also
present in patients with inactive CD, in which ulceration
is not present. In addition, the presence of increased
permeability during clinical remission is associated with
greater rates of relapse to active CD.5,6 Correlative data
also suggest that barrier defects may be related to initial
CD pathogenesis; a subset of healthy first-degree relatives
of CD patients are known to have increased permeabil-
ity.7 Although anecdotal, the report of CD in a previously
healthy first-degree relative with increased permeability
further supports the idea that barrier loss may be a
contributing factor in IBD development.8 There are also
emerging data that immune-mediated barrier defects are
prevalent in diarrhea-predominant irritable bowel syn-
drome (IBS).9,10 Together with increased appreciation of
permeability defects in animal models over the past de-
cade,11,12 these observations have fueled interest in the role
of intestinal permeability in disease. Many believe that im-
proved understanding of the mechanisms of barrier loss has
great potential to define pathogenesis of IBD, and IBS, and
may drive development of novel treatments.

Inflammatory activity and cytokine stimulation may be
responsible for some cases in which increased intestinal
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permeability is present despite the absence of mucosal
erosion. This is likely because the intestinal epithelial
tight junction, which defines permeability in intact mu-
cosa, can be regulated by inflammatory cytokines.13–18 In
cell culture and animal models, acute tumor necrosis
factor (TNF)-� treatment causes increased permeability
of intestinal epithelial tight junctions within hours.19

Prevention of these barrier defects by blocking elements
of the signal transduction pathway prevents TNF-in-
duced diarrhea in vivo.19,20 In CD patients, anti-TNF
therapy is able to restore intestinal barrier function,21

and genetic analyses of CD families suggests that in-
creased intestinal permeability may be linked to a specific
mutation of the NOD2/CARD15 CD susceptibility gene.22

Thus, many stimuli can trigger intestinal barrier dysfunc-
tion.

Despite growing interest in, and understanding of,
mechanisms of barrier loss by TNF, it is likely that other

mechanisms also contribute to barrier dysfunction. For
example, TNF neutralization is unable to completely re-
store normal barrier function responses in CD patients.23

Thus, the possibility remains that a primary epithelial
defect contributes to CD pathogenesis. Alternatively, a
primary defect separate from both immune and epithelial
cells may also participate in this complex regulatory pro-
cess.

In this issue of GASTROENTEROLOGY, Savidge et al.3 use
a genetic model of glial ablation-induced enteritis to
better characterize the mechanisms of this disease and,
remarkably, find a potential role for barrier defects. This
model uses transgenic mice in which the glial fibrillary
acidic protein (GFAP) promoter directs expression of
herpes simplex virus thymidine kinase.1 Administration
of ganciclovir for 2 weeks causes marked ablation of glia
within the jejunal and ileal enteric nervous system. Sim-
ilar to immune-mediated glial ablation,2 ganciclovir-in-
duced glial loss triggers a TH1-polarized immune response.3

Although GFAP expression, a measure of glial abundance,
was reduced by about 50% after 7 days of ganciclovir treat-
ment, neither obvious intestinal pathology nor marked el-
evation in mucosal cytokine expression were noted until 14
days of ganciclovir treatment, when GFAP expression was
reduced by approximately 90%.3 Despite this lag in devel-
opment of gross pathology, intestinal permeability to small
probes was increased within 7 days of ganciclovir treatment,
a phenomenon also reported after immune-mediated glial
destruction.24 This suggests that enteric glia may provide a
critical homeostatic influence that helps to maintain intes-
tinal epithelial barrier function. This idea is not without
precedent, as mucosal glial-derived neurotrophic factor has
been reported to inhibit epithelial apoptosis and be up-
regulated in CD.25 Moreover, in the central nervous system,
glia are thought to play a critical role in maintaining the
endothelial blood–brain barrier.26,27

To better characterize the potential role of enteric glia
in epithelial barrier function, Savidge et al.3 created a
reductionist system by culturing intestinal epithelial
(Caco-2) cells and isolated enteric and central glia. Their
data show that glia release a soluble substance that in-
teracts with the basolateral surface of Caco-2 cells to
enhance barrier function. This was associated with in-
creased expression of the tight junction proteins ZO-1
and occludin. Biochemical analysis identified the pres-
ence of reduced and nitrosylated forms of glutathione in
the fraction of glial secretions including the barrier-in-
ducing activity, and direct addition of these compounds
to Caco-2 cultures showed that s-nitrosoglutathione
(GSNO) had similar activity. Moreover, intraperitoneal
GSNO administration prevented barrier defects, cytokine
induction, and gross enteritis during ganciclovir-induced
glial ablation.3 These data therefore suggest that GSNO
may play a pivotal homeostatic role in maintaining the
mucosal barrier and/or suppressing inflammation. Con-
sistent with this, GSNO also reduced paracellular perme-

Figure 1. Intestinal epithelial barrier regulation by glial products. Enteric
glia encircle enteric neurons as neuronal processes extend from Auer-
bach’s and Meissner’s plexi to the mucosa. As shown in the inset, these
glia release many products, including glial-derived neurotrophic factor and
GSNO. Savidge et al. show that GSNO can prevent epithelial barrier loss,
perhaps by signaling to the epithelial tight junction.

1616 EDITORIALS GASTROENTEROLOGY Vol. 132, No. 4



ability increases seen in colon biopsies from CD patients,
but had no effect on permeability of biopsies from con-
trol subjects.3

How then does this relate to human IBD? Is there
evidence supporting changes in glial function in CD?
This remains a controversial topic, with available data
suggesting that absolute numbers of glia may be in-
creased in IBD but that synthesis of glia-derived mole-
cules may be either increased or decreased.2,28,29 In some
cases, this may reflect the ability of glia to respond to
cytokines,29,30 thereby providing a link between mucosal
immune status and the enteric nervous system. In addi-
tion, it seems that glia-derived GSNO is able to modulate
the immune system, at least partly by inhibiting nuclear
factor �B.31,32 Thus, as noted in other available models of
IBD with increased intestinal permeability,11,12 it remains
unclear if glial ablation triggers a mucosal inflammatory
response in which an early event includes barrier disruption
or if the barrier disruption triggers subsequent inflamma-
tion. In either case, emerging data suggest that barrier
disruption and mucosal cytokine release can establish a
self-amplifying feed-forward loop that results in disease.33

Further study of this glial ablation model may provide
important additional information. For example, most
IBD models require the presence of luminal bacteria.34 It
would be of interest to know if this is also true in the case
of glial ablation. Moreover, because compromised muco-
sal barrier function is now well-documented in chronic
disease models with TH1 immune polarization,11,12 it
would be of interest to determine the mechanisms of
barrier loss after glial ablation. For example, does loss of
glial products, such glial-derived neurotrophic factor,
cause barrier loss via increased epithelial apoptosis?25,35

Alternatively, does the effect of glial ablation represent in
vivo tight junction regulation, and, if this is the
case, what signaling events are important for this to oc-
cur?14–16,18 Finally, it will be critical to extend these obser-
vations beyond experimental models of disease to rigor-
ously assess enteric glia and GSNO production in IBD and
IBS and, ultimately, to determine if GSNO can prevent or
alleviate disease in patients. All of these questions will re-
quire further study, but the work by Savidge et al. represents
an important step forward and underscores the fact that, if
you’ve got guts, you need nerve (or at least glia).

LIPING SU
JERROLD R. TURNER
Department of Pathology
The University of Chicago
Chicago, Illinois
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It’s Chickens and Eggs All Over Again: Is Central Reorganization the
Result or Cause of Persistent Visceral Pain?

See “Pain in chronic pancreatitis: The role of
reorganization in the central nervous system,”
by Dimcevski G, Saber AK, Funch–Jensen P,
Le Pera D, Valeriani M, Arendt-Nielsen L, and
Drewes on page 1546.

Since peripheral and central contributions to visceral
hypersensitivity were last reviewed formally in this jour-

nal,1 there has been growing appreciation that visceral dis-
orders characterized by persistent discomfort and pain re-
veal, at least in part, a dysregulated central nervous system.
Brain imaging and related experimental strategies have con-
tributed to this concept, although such studies have not yet
revealed aspects of visceral pain processing in brain distinct
from nonvisceral pain processing.2 Generally, it has been
found that brain areas activated by experimental visceral
stimuli, either in naïve subjects or patients with visceral

disorders, are similar to those activated by nonvisceral stim-
ulation. In addition to activation of the insula, anterior
cingulate gyrus, and somatosensory areas, brainstem areas
have been shown to be deactivated in some studies in
patients, a result that has been interpreted to indicate re-
duced activity (and dysregulation) in endogenous pain
modulatory systems. As advanced in the report by Dim-
cevski et al,3 functional reorganization within the central
nervous system can accompany chronic visceral disorders
and contribute to pain.

They examined event-related brain potentials in
healthy subjects and in a group of chronic pancreatitis
patients (mean, 5.4 years duration), electrically stimulat-
ing, sequentially, above the gastroesophageal junction,
the stomach and then the horizontal part of duodenum.
At each site of stimulation, they measured event-related
evoked potentials from surface electrodes on the scalp
and assessed sensation. Finding that neuronal sources in
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